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Abstract
In this paper we establish a connection of Picard-type elliptic solutions of the
Painlevé VI equation with the special solutions of the non-stationary Lamé
equation. The latter appeared in the study of the ground-state properties of
Baxter’s solvable eight-vertex lattice model at a particular point, η = π/3, of
the disordered regime.

PACS numbers: 02.30.Gp, 02.30.Hq, 02.30.Ik

1. Introduction

The Painlevé transcendents have numerous remarkable applications in the theory of integrable
models of statistical mechanics and quantum field theory (see, for instance, [1–3]). We
mention, in particular, the calculation of the ‘supersymmetric index’ and related problems of
dilute polymers on a cylinder which lead to Painlevé III [4, 5]. These problems are connected
with the finite volume massive sine-Gordon model with N = 2 supersymmetry. The lattice
analogue of this continuous quantum field theory corresponds to a special case of Baxter’s
famous solvable eight-vertex lattice model [6]. In this paper we continue our study [7] of this
special model on a finite lattice and unravel its deep connections with Painlevé VI theory.

We consider the eight-vertex model on a square lattice with an odd number, N = 2n + 1,
of columns and periodic boundary conditions. The eigenvalues of the row-to-row transfer
matrix of the model, T (u), satisfy the TQ equation [6]

T (u)Q(u) = φ(u − η)Q(u + 2η) + φ(u + η)Q(u − 2η), (1)

where u is the spectral parameter,

φ(u) = ϑN
1 (u | q), q = eiπτ , Im τ > 0, (2)

and ϑ1(u | q) is the standard theta-function with the periods π and πτ (we follow the notation
of [8]). Here we consider a special case η = π/3, where the ground-state eigenvalue is known
[9, 10] to have a very simple form for all (odd) N

T (u) = φ(u), η = π

3
. (3)
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Equation (1) with this eigenvalue, T (u), has two different solutions [11, 12], Q±(u) ≡
Q±(u, q, n), which are entire functions of the variable u and obey the following periodicity
conditions [6, 13]:1

Q±(u + π) = ±(−1)nQ±(u),

Q±(u + πτ) = q−N/2 e−iNu Q∓(u), (4)

Q±(−u) = Q±(u).

The above requirements uniquely determine Q±(u) to within a common u-independent
normalization factor. It is convenient to rewrite the functional equation (1) for Q±(u) in
the form

�±(u) + �±

(
u +

2π

3

)
+ �±

(
u +

4π

3

)
= 0, (5)

where

�±(u) ≡ �±(u, q, n) = ϑ2n+1
1 (u | q)

ϑn
1 (3u | q3)

Q±(u, q, n) (6)

are the meromorphic functions of the variable u for any fixed values of q and n. As shown in
[7], these functions satisfy the non-stationary Lamé equation

6q
∂

∂q
�(u, q, n) =

{
− ∂2

∂u2
+ 9n(n + 1)℘ (3u | q3) + c(q, n)

}
�(u, q, n), (7)

where the elliptic Weierstrass ℘-function, ℘(v | eiπε), has the periods π and πε [8]. The
constant c(q, n) appearing in (7) is totally controlled by the (u-independent) normalization
of Q±(u). Note that this equation (in fact, a more general equation, usually called the non-
autonomous Lamé equation) arose previously [14–17] in different contexts. We will not
explore these connections here.

Let us quote other relevant results of [7]. Define the combinations

Q1(u) = (Q+(u) + Q−(u))/2, Q2(u) = (Q+(u) − Q−(u))/2 (8)

such that

Q1,2(u + π) = (−1)nQ2,1(u). (9)

Bearing in mind this simple relation we will only consider Q1(u), writing it as Q
(n)
1 (u) to

indicate the n-dependence. Obviously the linear relations (5) and (7) remain unaffected if
Q±(u) in (6) is replaced by Q

(n)
1 (u). The partial differential equation (7) has, of course, many

solutions. Here we are only interested in the very special solutions, relevant to our original
problem of the eight-vertex model (by definition the functions Q

(n)
1 (u) are entire quasi-periodic

functions of u with the periods π and 2πτ ). Introduce new variables γ and x, instead of q
and u,

γ ≡ γ (q) = −
[
ϑ1(π/3 | q1/2)

ϑ2(π/3 | q1/2)

]2

, x = γ

[
ϑ3(u/2 | q1/2)

ϑ4(u/2 | q1/2)

]2

, (10)

and new functions Pn(x, z) instead of Q
(n)
1 (u),

Q
(n)
1 (u) = N (q, n)ϑ3(u/2 | q1/2)ϑ2n

4 (u/2 | q1/2)Pn(x, z), z = γ −2, (11)

where N (q, n) is an arbitrary normalization factor (which remains at our disposal). The
properties of the functions Pn(x, z) corresponding to the required solutions of (5) and (7) can
be summarized by the following

1 The factor (−1)n in (4) and (9) reflects our convention for labelling the eigenvalues for different n.
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Conjecture 1.

(a) The functions Pn(x, z) are polynomials in x, z of the degree n in x,

Pn(x, z) =
n∑

k=0

r
(n)
k (z)xk, (12)

while r
(n)
i (z), i = 0, . . . , n, are polynomials in z of the degree

deg
[
r

(n)
k (z)

]
�

⌊
n(n − 1)/4 + k/2

⌋
(13)

with positive integer coefficients. The normalization ofPn(x, z) is fixed by the requirement
r(n)
n (0) = 1 and �x� denotes the largest integer not exceeding x.

(b) The coefficients of the lowest and highest powers in x, corresponding to k = 0 and k = n

in (12), read

r
(n)
0 (z) = τn(z,−1/3), r(n)

n (z) = τn+1(z, 1/6), (14)

where the functions τn(z, ξ) (for each fixed value of the their second argument ξ ) are
determined by the recurrence relation

2z(z − 1)(9z − 1)2[log τn(z)]
′′
z + 2(3z − 1)2(9z − 1)[log τn(z)]

′
z

+ 8

[
2n − 4ξ − 1

3

]2
τn+1(z)τn−1(z)

τ 2
n (z)

− [12(3n − 6ξ − 1)(n − 2ξ)

+ (9z − 1)(n − 1)(5n − 12ξ)] = 0, (15)

with the initial condition

τ0(z, ξ) = 1, τ1(z, ξ) = −4ξ + 5/3. (16)

The functions τn(z, ξ) are polynomials in z for all n = 0, 1, 2, . . . ,∞.

The conjecture has been verified by an explicit calculation [7] of Pn(x, z) for all n � 50.
The polynomials Pn(x, z) can be effectively calculated using the algebraic form (see [7])

of equation (7). The first few of them read2

P0(x, z) = 1, P1(x, z) = x + 3, P2(x, z) = x2(1 + z) + 5x(1 + 3z) + 10, (17)

P3(x, z) = x3(1 + 3z + 4z2) + 7x2(1 + 5z + 18z2) + 7x(3 + 19z + 18z2) + 35 + 21z. (18)

As explained in [7], equation (7) leads to a descending recurrence relation for the coefficients
in (12), in the sense that each coefficient r

(n)
k (z) with k < n can be recursively calculated in

terms of r(n)
m (z), with m = k + 1, . . . , n and, therefore, can eventually be expressed through

the coefficient r(n)
n (z) of the leading power of x. The conditions that this procedure truncates

(and thus defines a polynomial, but not an infinite series in negative powers of x) completely
determine the starting leading coefficient as a function of z. The above conjecture implies
that these truncation conditions are equivalent to the particular case (ξ = 1/6) of recurrence
relations (15), (16). A similar statement applies to the (smallest power in x) coefficient r

(n)
0

of Pn(x, z). The results quoted above are due to [7] (except for the expression (14) for r
(n)
0 ,

which is new).
In this paper we show that the recurrence relation (15) exactly coincides with that

for the tau-functions associated with special elliptic solutions of the Painlevé VI equation,
revealing hitherto unknown connections of the eight-vertex model and the non-stationary
Lamé equation (7) to Painlevé VI theory.

2 The higher polynomials with n � 50 are available in electronic form upon request to the authors.
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Before concluding this introduction, let us briefly mention some problems related to
the special eight-vertex model considered here. In the trigonometric limit (q → 0) this
model reduces to the special six-vertex model (with the parameter � = −1/2), which
is closely connected with various interesting combinatorial problems [18–21], particularly,
with the theory of alternating sign matrices. The fact that the polynomials Pn(x, z) have
positive integer coefficients makes it plausible to suggest that these coefficients have some (yet
unknown) combinatorial interpretation.

In the scaling limit

n → ∞, q → 0, t = 8nq3/2 = fixed, (19)

functions (6) essentially reduce to the ground-state eigenvalues Q±(θ) ≡ Q±(θ, t) of the
Q-operators [11, 22] of the restricted massive sine-Gordon model (at the so-called, super-
symmetric point) on a cylinder of the spatial circumference R, where t = MR and M is the
soliton mass and the variable θ is defined as u = πτ/2 − iθ/3. With a suitable t-dependent
normalization of Q±(θ), equation (7) then reduces to the ‘non-stationary Mathieu equation’
[7],

t
∂

∂t
Q±(θ, t) =

{
∂2

∂θ2
− 1

8
t2(cosh 2θ − 1)

}
Q±(θ, t). (20)

This equation determines the asymptotic behaviour of Q±(θ) at large θ

logQ±(θ) = − 1
4 t eθ + logD±(t) + 2 (∂t logD±(t) − t/8) e−θ + O(e−2θ ), θ → +∞,

(21)

where D±(t) are the Fredholm determinants, which previously appeared in connection with
the ‘supersymmetric index’ and the dilute polymers on a cylinder [4, 5, 23, 24]. Note, in
particular, that the quantity

F(t) = d

dt
U(t), U(t) = log

D+(t)

D−(t)
, (22)

describes the free energy of a single incontractible polymer loop and satisfies the Painlevé III
equation [23]

1

t

d

dt
t

d

dt
U(t) = 1

2
sinh 2U(t). (23)

2. Painlevé VI equation

The Painleve PVI(α, β, γ, δ) is the following second-order differential equation [25, 26],

q ′′(t) = 1

2

(
1

q(t)
+

1

q(t) − 1
+

1

q(t) − t

)
q ′(t)2 −

(
1

t
+

1

(t − 1)
+

1

q(t) − t

)
q ′(t)

+
q(t)(q(t) − 1)(q(t) − t)

t2(t − 1)2

[
α + β

t

q(t)2
+ γ

t − 1

(q(t) − 1)2
+ δ

t (t − 1)

(q(t) − t)2

]
,

(24)

where the following parameterizations of four constants [27] are chosen

α = 1
2κ2

∞, β = − 1
2κ2

0 , γ = 1
2κ2

1 , δ = 1
2 (1 − θ2), (25)

κ0 = b1 + b2, κ1 = b1 − b2, κ∞ = b3 − b4, θ = b3 + b4 + 1. (26)
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This equation is equivalent to the Hamiltonian system HVI(t; q, p) described by the equations

dq

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂q
, (27)

with the Hamiltonian function

HVI(t; q, p) = 1

t (t − 1)
[q(q − 1)(q − t)p2

−{κ0(q − 1)(q − t) + κ1q(q − t) + (θ − 1)q(q − 1)}p + κ(q − t)], (28)

where q ≡ q(t), p ≡ p(t) and

κ = 1
4 (κ0 + κ1 + θ − 1)2 − 1

4κ2
∞. (29)

One can introduce an auxiliary Hamiltonian h(t),

h(t) = t (t − 1)H(t) + e2(b1, b3, b4)t − 1
2e2(b1, b2, b3, b4), (30)

where ei(x1, . . . , xn) is the ith elementary symmetric function in n variables.
Okamoto [27] showed that, for each pair {q(t), p(t)} satisfying (27), the function h(t)

solves the EVI equation,

h′(t)[t (1 − t)h′′(t)]2 + [h′(t)[2h(t) − (2t − 1)h′(t)] + b1b2b3b4]2 =
4∏

k=1

(
h′(t) + b2

k

)
, (31)

and q(t) solves PVI(α, β, γ, δ), (24).
Conversely, for each solution h(t) of (31), such that d2

dt2 h(t) �= 0, there exists a solution
{q(t), p(t)} of (27), where q(t) solves (24). An explicit correspondence between the three
sets {q(t), q ′(t)}, {q(t), p(t)} and {h(t), h′(t), h′′(t)} is given by birational transformations,
which can be found in [27].

The EVI equation is a particular case of a more general class of the second-order second-
degree equation

y ′′(t)2 = F(t, y(t), y ′(t)), (32)

where F is rational in y(t), y ′(t), locally analytic in t, with the property that the only movable
singularities of y(t) are poles. Such equations were classified in [28], where equation (31)
is referred to the ‘SD-I type’. Originally, we have obtained equations of the form (32) for
asymptotics of the polynomals Pn(x, z) and only then reduced them to (31) and (24).

The group of Backlund transformations of PVI is isomorphic to the affine Weyl group
of the type D4. It contains the following transformations of parameters (only 5 of them are
independent)

w1 : b1 ↔ b2, w2 : b2 ↔ b3, w3 : b3 ↔ b4, w4 : b3 → −b3, b4 → −b4,

(33)

x1 : κ0 ↔ κ1, x2 : κ0 ↔ κ∞, x3 : κ0 ↔ θ, (34)

and the parallel transformation

l3 : b ≡ (b1, b2, b3, b4) → b+ ≡ (b1, b2, b3 + 1, b4). (35)

Here we shall use only two transformations: x2 and l3. The canonical transformation x2

corresponds to a simple change of variables [27],

x2
� : (q, p,H, t) → (q−1, εq − q2p,−H/t2, 1/t), ε = 1

2 (κ0 + κ1 + θ − 1 + κ∞).

(36)
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The birational canonical transformation,

{q, p} = {q(b), p(b)} → {q+, p+} = {q(b+), p(b+)}, (37)

corresponding to l3, can be obtained from the observation that [27]

h+(t, q+, p+) = h(t, q, p) − q(q − 1)p + (b1 + b4)q − 1
2 (b1 + b2 + b4). (38)

Here we shall only give the expression for q in terms of {q+, p+}:
q
{
p2

+q+(q+ − 1)(q+ − t) + p+[2(1 + b1 + b3)q+(1 − q+) + (b1 + b2)(q+ − t) + 2b1(t − 1)q+]

+ (1 + b1 + b3)[(1 + b1 + b3)(q+ − 1) + t (1 + b3 − b1) + b1 − b2]
}

− t[p+(q+ − 1)− 1 − b1 − b3][p+q+(q+ − 1)− (1 + b1 + b3)q+ + b1 + b2] = 0.

(39)

Later we will need the transformation x2l3x
2

x2l3x
2 : {b} = {b1, b2, b3, b4} → {b̃} = {

b1 + 1
2 , b2 + 1

2 , b3 + 1
2 , b4 + 1

2

}
. (40)

Combining (36)–(39) one obtains

q = {p̃2(q̃ − t)(q̃ − 1) + p̃(2 + b1 + b2 + b3 + b4 + (b1 − b2)t − (2 + 2b1 + b3 + b4)q̃)

+ (1 + b1 + b3)(1 + b1 + b4)}/{(1 + b1 + b3 + p̃(1 − q̃))(1 + b1 + b4 + p̃(1 − q̃))},
(41)

where q = q(b) and q̃ = q(b̃), p̃ = p(b̃).

3. Special elliptic solutions

It goes back to Picard [29] that if parameters (26) satisfy

b1 = b2 = 0, b3 = b4 = −1/2 (42)

then a general solution of PVI reads (see also [30])

q(t) = ℘(c1ω1 + c2ω2;ω1, ω2) +
t + 1

3
, (43)

where ℘(u;ω1, ω2) is the Weierstrass elliptic function with half-periods ω1,2, c1,2 are arbitrary
constants and ω1,2(t) are two linearly independent solutions of the hypergeometric equations

t (1 − t)ω′′(t) + (1 − 2t)ω′(t) − 1
4ω(t) = 0. (44)

It is convenient to choose

ω1(t) = π

2
2F1

(
1

2
,

1

2
; 1; t

)
= K(t1/2), ω2(t) = i

π

2
2F1

(
1

2
,

1

2
; 1; 1 − t

)
= iK′(t1/2),

(45)

where K and K′ are the complete elliptic integrals of the modulus k = t1/2.
Using expressions for invariants of the Weierstrass function e1, e2, e3,

e1 = 1 − t + 1

3
, e2 = t − t + 1

3
, e3 = − t + 1

3
, (46)

we can rewrite Picard’s solution of PVI as

q(t) = ns2(c1K + c2iK′, k), k = t1/2. (47)

Let us choose

c1 = 1, c2 = 1
3 (48)
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and denote corresponding solution of (24) as q1(t). Using addition theorems for elliptic
functions it is easy to show that q1(t) satisfies the algebraic equation

q4
1 (t) − 4tq3

1 (t) + 6tq2
1 (t) − 4tq1(t) + t2 = 0. (49)

In fact, this algebraic solution of PVI is very special. It solves (24) not only for Picard’s choice
of parameters (42) but also for

b1 = ξ − 1
6 , b2 = 0, b3 = ξ − 2

3 , b4 = 2ξ − 5
6 , (50)

where ξ is an arbitrary parameter. This happens because PVI, (24), splits up into two different
equations which are both satisfied by (49).

Using the above formulae we can easily find expressions for p1(t) and h1(t) corresponding
to (49):

p1(t) = (1 − 3ξ)
(
3t − 2tq1(t) − q2

1 (t)
)

6t (q1(t) − 1)2
,

h1(t) = 1 − 2t

72
+

(1 − 2ξ)(1 − 3ξ)

4

(t + q1(t) − 2tq1(t))

q1(t) − t
.

(51)

Now we shall assume that this solution corresponds to the case n = 1 and apply Backlund
transformation x2(l3)

1−nx2 to obtain a series of solutions {qn(t), pn(t), hn(t)} with parameters

b1 = 1

3
+ ξ − n

2
, b2 = 1

2
− n

2
, b3 = −1

6
+ ξ − n

2
, b4 = −1

3
+ 2ξ − n

2
.

(52)

At this stage we are ready to establish a connection with a parameterization from the previous
sections. Let us assume that the elliptic nome q in (2), (6), (7) and (10) is given by

q = exp

{
iπ

2

3

K′(k)

K(k)

}
, k = t1/2, (53)

where K(k) and K′(k) are defined by (45). Using Landen transformation for elliptic functions
it is easy to obtain the following rational parameterization for z = 1/γ (q)2 defined in (10),
(11), and for t , q1(t) in (49),

z = 1

γ 2(q)
= 1 + γ

(3 − γ )γ
, t = (1 − γ )(3 + γ )3

(1 + γ )(3 − γ )3
, q1(t) = (1 − γ )(3 + γ )

(1 + γ )(3 − γ )
, (54)

in terms of a new parameter γ̄ ≡ γ (q1/2), defined by (10) with q replaced by q1/2. Note that
such parameterization of Picard’s solutions of PVI with the above choice (48) of the parameters
c1 and c2 has already appeared in [30, 31].

From these formulae one can get an explicit connection of variables t and z:

t = (z − 1)(1 − 9z)3

32z

[
1 +

27z2 − 18z − 1√
(1 − z)(1 − 9z)3

]
. (55)

Now we can construct a sequence of τ -functions associated with a series of auxiliary
Hamiltonians hn(t). It appears that corresponding τ -functions are polynomials in variable z.

First, let us introduce a sequence of functions σn(z) considering them as functions of z

σn(z) = 1

tz

√
1 − 9z

1 − z

{
hn(t) +

1

72
(2t − 1) + (n − 1)2

[
t − 1

4
+

1 − 9z

8

√
(1 − t)z

]

+ (n − 1)

(
ξ − 5

12

) [
1 − t +

t (1 − 3z)√
(1 − z)(1 − 9z)

]

+

(
ξ − 1

2

)(
ξ − 1

3

) [
3

2
−

√
1 − t

z

]}
. (56)
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Comparing it with (51) and using (54) it is easy to see that

σ1(z) = 0. (57)

Then using Backlund transformations x2l−1
3 x2 and x2l3x

2 it is not difficult to show that

σi(z) = 0, i = 0, 1, 2. (58)

The easiest way to do that is to calculate hi(t) , i = 0, 2, in terms of h1(t) (51), substitute into
(56) and use a rational parameterization (54).

Now let us introduce a family of τ -functions τn(z, ξ) via

σn(z) = d

dz
[log τn(z, ξ)] (59)

and fix a normalization for n = 0, 1, 2 as

τ0(z, ξ) = 1, τ1(z, ξ) = −4ξ + 5/3, τ2(z, ξ) = 3(2ξ − 1)(3ξ − 1). (60)

Using Okamoto’s Toda-recursion relations for τ -functions for PVI, generated via successive
applications of parallel transformation l3 [27], one can show that the recurrence relation
for τn(z, ξ) exactly coincides with (15). Thus, we showed that the leading coefficient and
the constant term of Pn(x, z) (considered as polynomials in x) can be expressed in terms
τ -functions for special solutions of PVI.

At the moment we do not have a complete proof of the polynomiality of τn(z). Note that
this property takes place provided that two successive τ -functions τn(z) and τn+1(z) do not
have a non-trivial common divisor (which is a polynomial in z).

One of the challenging problems is to find a determinant representation for τn(z, ξ) similar
to the known other polynomial solutions of the Painlevé equations. It could help to clarify the
structure of Pn(x, z) and possibly to establish a connection with problems of combinatorics.
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